
UIResponder Class Reference

Overview
The UIResponder class defines an interface for objects that respond to and handle
events. It is the superclass of UIApplication, UIView and its subclasses (which include
UIWindow). Instances of these classes are sometimes referred to as responder objects
or, simply, responders.

There are two general kinds of events: touch events and motion events. The primary
event-handling methods for touches are touchesBegan:withEvent:,
touchesMoved:withEvent:, touchesEnded:withEvent:, and touchesCancelled:withEvent:. The
parameters of these methods associate touches with their events—��especially
touches that are new or have changed—��and thus allow responder objects to track
and handle the touches as the delivered events progress through the phases of a
multi-touch sequence. Any time a finger touches the screen, is dragged on the screen,
or lifts from the screen, a UIEvent object is generated. The event object contains UITouch
objects for all fingers on the screen or just lifted from it.

iPhone OS 3.0 introduced system capabilities for generating motion events, specifically
the motion of shaking the device. The event-handling methods for these kinds of events
are motionBegan:withEvent:, motionEnded:withEvent:, and motionCancelled:withEvent:.
Additionally for iPhone OS 3.0, the canPerformAction:withSender: method allows
responders to validate commands in the user interface while the undoManager property
returns the nearest NSUndoManager object in the responder chain.

See Event Handling in iPhone Application Programming Guide for further information on
event handling.

Tasks
Managing the Responder Chain
 – nextResponder
 – isFirstResponder
 – canBecomeFirstResponder
 – becomeFirstResponder
 – canResignFirstResponder
 – resignFirstResponder
Responding to Touch Events
 – touchesBegan:withEvent:
 – touchesMoved:withEvent:
 – touchesEnded:withEvent:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 1

 – touchesCancelled:withEvent:
Responding to Motion Events
 – motionBegan:withEvent:
 – motionEnded:withEvent:
 – motionCancelled:withEvent:
Getting the Undo Manager
 undoManager property
Validating Commands
 – canPerformAction:withSender:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 2

UIApplication Class Reference

Overview
The UIApplication class provides a centralized point of control and coordination for
applications running on iPhone OS.

Every application must have exactly one instance of UIApplication (or a subclass of
UIApplication). When an application is launched, the UIApplicationMain function is called;
among its other tasks, this function create a singleton UIApplication object. Thereafter
you can access this object by invoking the sharedApplication class method.

A major role of a UIApplication object is to handle the initial routing of incoming user
events. It also dispatches action messages forwarded to it by control objects (UIControl)
to the appropriate target objects. In addition, the UIApplication object maintains a list of
all the windows (UIWindow objects) currently open in the application, so through those it
can retrieve any of the applicationâ��s UIView objects. The application object is
typically assigned a delegate, an object that the application informs of significant
runtime eventsâ��for example, application launch, low-memory warnings, and
application terminationâ��giving it an opportunity to respond appropriately.

Applications can cooperatively handle a resource such as an email or an image file
through the openURL: method. For example, an application opening an email URL with
this method may cause the mail client to launch and display the message.

For iPhone OS 3.0, UIApplication has added methods for remote-notification registration,
for triggering of the undo-redo UI (applicationSupportsShakeToEdit), and for determining
whether any installed application can open a URL (canOpenURL:).

UIApplication defines a delegate that must adopt the UIApplicationDelegate protocol
implement one or more of the methods.

The programmatic interfaces of UIApplication and UIApplicationDelegate also allow you to
manage behavior that is specific to the device. You can control application response to
changes in interface orientation, temporarily suspend incoming user events, and turn
proximity sensing (of the userâ��s face) off and on again.

Subclassing Notes
You might decide to subclass UIApplication to override sendEvent: or
sendAction:to:from:forEvent: to implement custom event and action dispatching. However,
there is rarely a valid need to extend this class; the application delegate
(UIApplicationDelegate is sufficient for most occasions. If you do subclass UIApplication,
be very sure of what you are trying to accomplish with the subclass.

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 3

Tasks
Getting the Application Instance
 + sharedApplication
Getting Application Windows
 keyWindow property
 windows property
Controlling and Handling Events
 – sendEvent:
 – sendAction:to:from:forEvent:
 – beginIgnoringInteractionEvents
 – endIgnoringInteractionEvents
 – isIgnoringInteractionEvents
 applicationSupportsShakeToEdit property
 proximitySensingEnabled property
Opening a URL Resource
 – openURL:
 – canOpenURL:
Registering for Remote Notifications
 – registerForRemoteNotificationTypes:
 – unregisterForRemoteNotifications
 – enabledRemoteNotificationTypes
Managing Application Activity
 idleTimerDisabled property
Managing Status Bar Orientation
 – setStatusBarOrientation:animated:
 statusBarOrientation property
 statusBarOrientationAnimationDuration property
Controlling Application Appearance
 – setStatusBarHidden:animated:
 statusBarHidden property
 – setStatusBarStyle:animated:
 statusBarStyle property
 statusBarFrame property
 networkActivityIndicatorVisible property
 applicationIconBadgeNumber property
Setting and Getting the Delegate
 delegate property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 4

UIView Class Reference

Overview
The UIView class is primarily an abstract superclass that provides concrete subclasses
with a structure for drawing and handling events. You can also create instances of
UIView to contain other views.

UIView objects are arranged within an UIWindow object, in a nested hierarchy of
subviews. Parent objects in the view hierarchy are called superviews, and children are
called subviews. A view object claims a rectangular region of its enclosing superview,
is responsible for all drawing within that region, and is eligible to receive events
occurring in it as well. Sibling views are able to overlap without any issues, allowing
complex view placement.

The UIView class provides common methods you use to create all types of views and
access their properties. For example, unless a subclass has its own designated
initializer, you use the initWithFrame: method to create a view. The frame property
specifies the origin and size of a view in superview coordinates. The origin of the
coordinate system for all views is in the upper-left corner.

You can also use the center and bounds properties to set the position and size of a view.
The center property specifies the view’s center point in superview’s coordinates. The
bounds property specifies the origin in the view’s coordinates and its size (the view’s
content may be larger than the bounds size). The frame property is actually computed
based on the center and bounds property values. Therefore, you can set any of these
three properties and they affect the values of the others.

It’s important to set the autoresizing properties of views so that when they are displayed
or the orientation changes, the views are displayed correctly within the superview’s
bounds. Use the autoresizesSubviews property, especially if you subclass UIView, to
specify whether the view should automatically resize its subviews. Use the
autoresizingMask property with the constants described in UIViewAutoresizing to specify
how a view should automatically resize.

The UIView class provides a number of methods for managing the view hierarchy. Use
the superview property to get the parent view and the subviews property to get the child
views in the hierarchy. There are also a number of methods, listed in “Managing the
View Hierarchy,” for adding, inserting, and removing subviews as well as arranging
subviews in front of or in back of siblings.

When you subclass UIView to create a custom class that draws itself, implement the
drawRect: method to draw the view within the specified region. This method is invoked
the first time a view displays or when an event occurs that invalidates a part of the

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 5

view’s frame requiring it to redraw its content.

Normal geometry changes do not require redrawing the view. Therefore, if you alter the
appearance of a view and want to force it to redraw, send setNeedsDisplay or
setNeedsDisplayInRect: to the view. You can also set the contentMode to
UIViewContentModeRedraw to invoke the drawRect: method when the bounds change;
otherwise, the view is scaled and clipped without redrawing the content.

Subclasses can also be containers for other views. In this case, just override the
designated initializer, initWithFrame:, to create a view hierarchy. If you want to
programmatically force the layout of subviews before drawing, send setNeedsLayout to
the view. Then when layoutIfNeeded is invoked, the layoutSubviews method is invoked
just before displaying. Subclasses should override layoutSubviews to perform any
custom arrangement of subviews.

Some of the property changes to view objects can be animated—for example, setting
the frame, bounds, center, and transform properties. If you change these properties in an
animation block, the changes from the current state to the new state are animated.
Invoke the beginAnimations:context: class method to begin an animation block, set the
properties you want animated, and then invoke the commitAnimations class method to
end an animation block. The animations are run in a separate thread and begin when
the application returns to the run loop. Other animation class methods allow you to
control the start time, duration, delay, and curve of the animations within the block.

Use the hitTest:withEvent: and pointInside:withEvent: methods if you are processing events
and want to know where they occur. The UIView class inherits other event processing
methods from UIResponder. For more information on how views handle events, read
UIResponder Class Reference.

Read Window and Views in iPhone Application Programming Guide to learn how to use
this class.

Note: Prior to iPhone OS 3.0, UIView instances may have a maximum height and width
of 1024 x 1024. In iPhone OS 3.0 and later, views are no longer restricted to this
maximum size but are still limited by the amount of memory they consume. Therefore, it
is in your best interests to keep view sizes as small as possible. Regardless of which
version of iPhone OS is running, you should consider using a CATiledLayer object if you
need to create views larger than 1024 x 1024 in size.

Tasks
Creating Instances
 – initWithFrame:
Setting and Getting Attributes

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 6

 userInteractionEnabled property
Modifying the Bounds and Frame Rectangles
 frame property
 bounds property
 center property
 transform property
Managing the View Hierarchy
 superview property
 subviews property
 window property
 – addSubview:
 – bringSubviewToFront:
 – sendSubviewToBack:
 – removeFromSuperview
 – insertSubview:atIndex:
 – insertSubview:aboveSubview:
 – insertSubview:belowSubview:
 – exchangeSubviewAtIndex:withSubviewAtIndex:
 – isDescendantOfView:
Converting Coordinates
 – convertPoint:toView:
 – convertPoint:fromView:
 – convertRect:toView:
 – convertRect:fromView:
Resizing Subviews
 autoresizesSubviews property
 autoresizingMask property
 – sizeThatFits:
 – sizeToFit
 contentMode property
 contentStretch property
Searching for Views
 tag property
 – viewWithTag:
Laying out Views
 – setNeedsLayout
 – layoutIfNeeded
 – layoutSubviews
Displaying
 clipsToBounds property
 backgroundColor property
 alpha property
 opaque property
 clearsContextBeforeDrawing property
 – drawRect:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 7

 – setNeedsDisplay
 – setNeedsDisplayInRect:
 + layerClass
 layer property
 hidden property
Animating Views
 + beginAnimations:context:
 + commitAnimations
 + setAnimationStartDate:
 + setAnimationsEnabled:
 + setAnimationDelegate:
 + setAnimationWillStartSelector:
 + setAnimationDidStopSelector:
 + setAnimationDuration:
 + setAnimationDelay:
 + setAnimationCurve:
 + setAnimationRepeatCount:
 + setAnimationRepeatAutoreverses:
 + setAnimationBeginsFromCurrentState:
 + setAnimationTransition:forView:cache:
 + areAnimationsEnabled
Handling Events
 – hitTest:withEvent:
 – pointInside:withEvent:
 multipleTouchEnabled property
 exclusiveTouch property
 – endEditing:
Observing Changes
 – didAddSubview:
 – didMoveToSuperview
 – didMoveToWindow
 – willMoveToSuperview:
 – willMoveToWindow:
 – willRemoveSubview:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 8

UIWindow Class Reference

Overview
The UIWindow class defines objects (known as windows) that manage and coordinate
the windows an application displays on the screen. The two principal functions of a
window are to provide an area for displaying its views and to distribute events to the
views. The window is the root view in the view hierarchy. A window belongs to a level;
the windows in one level appear above another level. For example, alerts appear above
normal windows. Typically, there is only one window in an iPhone OS application.

Read Windows and Views in iPhone Application Programming Guide to learn how to
use this class.

Tasks
Configuring Windows
 windowLevel property
Making Windows Key
 keyWindow property
 – makeKeyAndVisible
 – becomeKeyWindow
 – makeKeyWindow
 – resignKeyWindow
Converting Coordinates
 – convertPoint:toWindow:
 – convertPoint:fromWindow:
 – convertRect:toWindow:
 – convertRect:fromWindow:
Sending Events
 – sendEvent:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 9

UILabel Class Reference

Overview
The UILabel class implements a read-only text view. You can use this class to draw one
or multiple lines of static text, such as those you might use to identify other parts of your
user interface. The base UILabel class provides control over the appearance of your
text, including whether it uses a shadow or draws with a highlight. If needed, you can
customize the appearance of your text further by subclassing.

The default content mode of the UILabel class is UIViewContentModeRedraw. This mode
causes the view to redraw its contents every time its bounding rectangle changes. You
can change this mode by modifying the inherited contentMode property of the class.

New label objects are configured to disregard user events by default. If you want to
handle events in a custom subclass of UILabel, you must explicitly change the value of
the userInteractionEnabled property to YES after initializing the object.
Tasks
Accessing the Text Attributes
 text property
 font property
 textColor property
 textAlignment property
 lineBreakMode property
 enabled property
Sizing the Label’s Text
 adjustsFontSizeToFitWidth property
 baselineAdjustment property
 minimumFontSize property
 numberOfLines property
Managing Highlight Values
 highlightedTextColor property
 highlighted property
Drawing a Shadow
 shadowColor property
 shadowOffset property
Drawing and Positioning Overrides
 – textRectForBounds:limitedToNumberOfLines:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 10

 – drawTextInRect:
Setting and Getting Attributes
 userInteractionEnabled property

UIPickerView Class Reference

Overview
The UIPickerView class implements objects, called picker views, that use a
spinning-wheel or slot-machine metaphor to show one or more sets of values. Users
select values by rotating the wheels so that the desired row of values aligns with a
selection indicator.

The UIDatePicker class uses a custom subclass of UIPickerView to display dates and
times. To see an example, tap the add (“+”) button in the the Alarm pane of the Clock
application.

The user interface provided by a picker view consists of components and rows. A
component is a wheel, which has a series of items (rows) at indexed locations on the
wheel. Each component also has an indexed location (left to right) in a picker view.
Each row on a component has content, which is either a string or a view object such as
a label (UILabel) or an image (UIImageView).

A UIPickerView object requires the cooperation of a delegate for constructing its
components and a data source for providing the numbers of components and rows. The
delegate must adopt the UIPickerViewDelegate protocol and implement the required
methods to return the drawing rectangle for rows in each component. It also provides
the content for each component’s row, either as a string or a view, and it typically
responds to new selections or deselections. The data source must adopt the
UIPickerViewDataSource protocol and implement the required methods to return the
number of components and the number of rows in each component.

You can dynamically change the rows of a component by calling the reloadComponent:
method, or dynamically change the rows of all components by calling the
reloadAllComponents method. When you call either of these methods, the picker view
asks the delegate for new component and row data, and asks the data source for new
component and row counts. Reload a picker view when a selected value in one
component should change the set of values in another component. For example,
changing a row value from February to March in one component should change a
related component representing the days of the month.

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 11

Tasks
Getting the Dimensions of the View Picker
 numberOfComponents property
 – numberOfRowsInComponent:
 – rowSizeForComponent:
Reloading the View Picker
 – reloadAllComponents
 – reloadComponent:
Selecting Rows in the View Picker
 – selectRow:inComponent:animated:
 – selectedRowInComponent:
Returning the View for a Row and Component
 – viewForRow:forComponent:
Specifying the Delegate
 delegate property
Specifying the Data Source
 dataSource property
Managing the Appearance of the Picker View
 showsSelectionIndicator property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 12

UIProgressView Class
Reference

Overview
You use the UIProgressView class to depict the progress of a task over time. An example
of a progress bar is the one shown at the bottom of the Mail application when it’s
downloading messages.

The UIProgressView class provides properties for managing the style of the progress bar
and for getting and setting values that are pinned to the progress of a task.

For an indeterminate progress indicator—or, informally, a “spinner”—use an instance of
the UIActivityIndicatorView class.

Tasks
Initializing the UIProgressView Object
 – initWithProgressViewStyle:
Managing the Progress Bar
 progress property
Configuring the Bar Style
 progressViewStyle property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 13

UIActivityIndicatorView Class
Reference

Overview
The UIActivityIndicatorView class creates and manages an indicator showing the
indeterminate progress of a task. Visually, this indicator is a “gear” that is animated to
spin.

You control when the progress indicator animates with the startAnimating and
stopAnimating methods. If the hidesWhenStopped property is set to YES, the indicator is
automatically hidden when animation stops.

Tasks
Initializing an UIActivityIndicatorView Object
 – initWithActivityIndicatorStyle:
Managing the Activity Indicator
 – startAnimating
 – stopAnimating
 – isAnimating
 hidesWhenStopped property
Managing the Indicator Style
 activityIndicatorViewStyle property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 14

UIImageView Class Reference

Overview
An image view object provides a view-based container for displaying either a single
image or for animating a series of images. For animating the images, the UIImageView
class provides controls to set the duration and frequency of the animation. You can also
start and stop the animation freely.

New image view objects are configured to disregard user events by default. If you want
to handle events in a custom subclass of UIImageView, you must explicitly change the
value of the userInteractionEnabled property to YES after initializing the object.

Subclassing Notes
Special Considerations
The UIImageView class is optimized to draw its images to the display. UIImageView will
not call drawRect: a subclass. If your subclass needs custom drawing code, it is
recommended you use UIView as the base class.

Tasks
Initializing a UIImageView Object
 – initWithImage:
 – initWithImage:highlightedImage:
Image Data
 image property
 highlightedImage property
Animating Images
 animationImages property
 highlightedAnimationImages property
 animationDuration property
 animationRepeatCount property
 – startAnimating
 – stopAnimating
 – isAnimating
Setting and Getting Attributes
 userInteractionEnabled property
 highlighted property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 15

UITabBar Class Reference
Overview
The UITabBar class implements a control for selecting one of two or more buttons, called
items. The most common use of a tab bar is to implement a modal interface where
tapping an item changes the selection. Use a UIToolbar object if you want to
momentarily highlight or not change the appearance of an item when tapped. The
UITabBar class provides the ability for the user to customize the tab bar by reordering,
removing, and adding items to the bar. You can use a tab bar delegate to augment this
behavior.

Use the UITabBarItem class to create items and the setItems:animated: method to add
them to a tab bar. All methods with an animated: argument allow you to optionally
animate changes to the display. Use the selectedItem property to access the current
item.

Important: In iPhone OS 3.0 and later, you should not attempt to use the methods and
properties of this class to modify the tab bar when it is associated with a tab bar
controller object. Modifying the tab bar in this way results in the throwing of an
exception. Instead, any modifications to the tab bar or its items should occur through the
tab bar controller interface. You may still directly modify a tab bar object that is not
associated with a tab bar controller.

Tasks
Getting and Setting Properties
 delegate property
Configuring Items
 items property
 selectedItem property
 – setItems:animated:
Customizing Tab Bars
 – beginCustomizingItems:
 – endCustomizingAnimated:
 – isCustomizing

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 16

UIToolbar Class Reference

Overview
An instance of the UIToolbar class is a control for selecting one of many buttons, called
toolbar items. A toolbar momentarily highlights or does not change the appearance of
an item when tapped. Use the UITabBar class if you need a radio button style control.

Use the UIBarButtonItem class to create items and the setItems:animated: method to add
them to a toolbar. All methods with an animated: argument allow you to optionally
animate changes to the display.

Toolbar images that represent normal and highlighted states of an item derive from the
image you set using the inherited image property from the UIBarItem class. For example,
the image is converted to white and then bevelled by adding a shadow for the normal
state.

Tasks
Configuring the Toolbar
 barStyle property
 tintColor property
 translucent property
Configuring Toolbar Items
 items property
 – setItems:animated:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 17

UINavigationBar Class
Reference

Overview
The UINavigationBar class implements a control for navigating hierarchical content. It’s a
bar, typically displayed at the top of the screen, containing buttons for navigating up and
down a hierarchy. The primary properties are a left (back) button, a center title, and an
optional right button. You can specify custom views for each of these.

You can use a navigation bar as a standalone object or in conjunction with a navigation
controller object. To use a navigation bar as a standalone object, you create it and add
it to your view hierarchy like you would any other view. Specifically, you can create it in
Interface Builder and load it with the rest of your views or you can create it
programmatically using the standard alloc and initWithFrame: methods.

You can modify the appearance of the bar using the barStyle, tintColor, and translucent
properties. These properties affect the visual appearance of the bar itself but they also
affect the way buttons are displayed in the bar. For example, if you set the translucent
property to YES, any buttons in the bar are also made partially opaque.

For information about using a navigation bar with a navigation controller object, see
“Using With a Navigation Controller.”

Adding Content to a Navigation Bar
When you use a navigation bar as a standalone object, you are responsible for
providing its contents. Unlike other types of views, you do not add subviews to a
navigation bar directly. Instead, you use a navigation item (an instance of the
UINavigationItem class) to specify what buttons or custom views you want displayed. A
navigation item has properties for specifying views on the left, right, and center of the
navigation bar and for specifying a custom prompt string.

A navigation bar manages a stack of UINavigationItem objects. Although the stack is
there mostly to support navigation controllers, you can use it as well to implement your
own custom navigation interface. The topmost item in the stack represents the
navigation item whose contents are currently displayed by the navigation bar. You push
new navigation items onto the stack using the pushNavigationItem:animated: method and
pop items off the stack using the popNavigationItemAnimated: method. Both of these
changes can be animated for the benefit of the user.

In addition to pushing and popping items, you can also set the contents of the stack
directly using either the items property or the setItems:animated: method. You might use

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 18

these methods at launch time to restore your interface to its previous state or to push or
pop more than one navigation item at a time.

If you are using a navigation bar as a standalone object, you should assign a custom
delegate object to the delegate property and use that object to intercept messages
coming from the navigation bar. Delegate objects must conform to the
UINavigationBarDelegate protocol. The delegate notifications let you know when the
contents of responsible for deciding when items are pushed or popped from the
stack—for example, it should display the previous view when the user clicks the back
button.

For more information about creating navigation items, see UINavigationItem Class
Reference. For more information about implementing a delegate object, see
UINavigationBarDelegate Protocol Reference.

Using With a Navigation Controller
The most common way to use a navigation bar is in conjunction with a
UINavigationController object. If you use a navigation controller to manage the navigation
between different screens of content, the navigation controller creates the navigation
bar automatically and pushes and pops navigation items when appropriate. You do not
have to create the navigation bar and you do not have to manage the pushing and
popping of navigation items yourself.

When used in conjunction with a navigation controller, there are only a handful of direct
customizations you can make to the navigation bar. Specifically, it is alright to modify
the barStyle, tintColor, and translucent properties of this class, but you must never directly
change UIView-level properties such as the frame, bounds, alpha, or hidden properties
directly. In addition, you should let the navigation controller manage the stack of
navigation items and not attempt to modify these items yourself.

A navigation controller automatically assigns itself as the delegate of its navigation bar
object. Therefore, when using a navigation controller, you must not attempt to assign a
custom delegate object to the corresponding navigation bar.

Tasks
Configuring Navigation Bars
 barStyle property
 tintColor property
 translucent property
Assigning the Delegate
 delegate property
Pushing and Popping Items
 – pushNavigationItem:animated:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 19

 – popNavigationItemAnimated:
 – setItems:animated:
 items property
 topItem property
 backItem property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 20

UITableViewCell Class
Reference

Overview
The UITableViewCell class defines the attributes and behavior of the cells that appear in
UITableView objects.

A UITableViewCell object (or table cell) includes properties and methods for managing
cell selection, highlighted state, editing state and controls, accessory views, reordering
controls, cell background, and content indentation. The class additionally includes
properties for setting and managing cell content, specifically text and images.

For iPhone OS 3.0, UITableViewCell includes two major improvements:

▪ Predefined cell styles that position elements of the cell (labels and images) in certain
locations and with certain attributes. See “Cell Styles” for descriptions of the
constants that apply to these styles.

▪ Properties for accessing the content of the cell. These properties include textLabel,
detailTextLabel, and imageView. Once you get the associated UILabel and
UIImageView objects, you can set their attributes, such as text color, font, image,
highlighted image, and so on.

You have two ways of extending the standard UITableViewCell object beyond the given
styles. To create cells with multiple, variously formatted and sized strings and images
for content, you can get the cell'��s content view (through its contentView property) and
add subviews to it. You can also subclass UITableViewCell to obtain cell characteristics
and behavior specific to your application'��s needs. See "��A Closer Look at
Table-View Cells" in Table View Programming Guide for iPhone OS for details.

Note: Setting the background color of a cell (via the backgroundColor property declared
by UIView) that is in a group-style table view has an effect in iPhone OS 3.0 that is
different than previous versions of the operating system. It now affects the area inside
the rounded rectangle instead of the area outside of it.

Tasks
Initializing a UITableViewCell Object
 – initWithStyle:reuseIdentifier:
 – initWithFrame:reuseIdentifier: Deprecated in iPhone OS 3.0

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 21

Reusing Cells
 reuseIdentifier property
 – prepareForReuse
Managing Text as Cell Content
 textLabel property
 detailTextLabel property
 text property
 font property
 textAlignment property
 textColor property
 selectedTextColor property
 lineBreakMode property
Managing Images as Cell Content
 imageView property
 image property
 selectedImage property
Accessing Views of the Cell Object
 contentView property
 backgroundView property
 selectedBackgroundView property
Managing Accessory Views
 accessoryType property
 accessoryView property
 editingAccessoryType property
 editingAccessoryView property
 hidesAccessoryWhenEditing property
Managing Cell Selection and Highlighting
 selected property
 selectionStyle property
 – setSelected:animated:
 highlighted property
 – setHighlighted:animated:
Editing the Cell
 editing property
 – setEditing:animated:
 editingStyle property
 showingDeleteConfirmation property
 showsReorderControl property
Adjusting to State Transitions
 – willTransitionToState:
 – didTransitionToState:
Managing Content Indentation
 indentationLevel property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 22

 indentationWidth property
 shouldIndentWhileEditing property
Managing Targets and Actions
These properties are deprecated as of iPhone OS 3.0. Instead, use the
tableView:commitEditingStyle:forRowAtIndexPath: method of the UITableViewDataSource
protocol or the tableView:accessoryButtonTappedForRowWithIndexPath: method of the
UITableViewDelegate protocol.

 target property
 editAction property
 accessoryAction property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 23

UIActionSheet Class Reference

Overview
Use the UIActionSheet class to implement an action sheet that displays a message and
presents buttons that let the user decide how to proceed. An action sheet is similar in
function but differs in appearance from an alert view.

Use the properties and methods in this class to set the message, set the style, set the
delegate, configure the buttons, and display the action sheet. You must set a delegate if
you add custom buttons. The delegate should conform to the UIActionSheetDelegate
protocol. When you display an action sheet, you can optionally animate it from the
bottom bar or an arbitrary view. How the action sheet is animated depends on the bar
style or the action sheet style you set.

Tasks
Creating Action Sheets

 – initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles
:

Setting Properties
 delegate property
 title property
 visible property
 actionSheetStyle property
Configuring Buttons
 – addButtonWithTitle:
 numberOfButtons property
 – buttonTitleAtIndex:
 cancelButtonIndex property
 destructiveButtonIndex property
 firstOtherButtonIndex property
Displaying
 – showFromTabBar:
 – showFromToolbar:
 – showInView:
Dismissing
 – dismissWithClickedButtonIndex:animated:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 24

UIAlertView Class Reference

Overview
Use the UIAlertView class to display an alert message to the user. An alert view
functions similar to but differs in appearance from an action sheet (an instance of
UIActionSheet).

Use the properties and methods defined in this class to set the title, message, and
delegate of an alert view and configure the buttons. You must set a delegate if you add
custom buttons. The delegate should conform to the UIAlertViewDelegate protocol. Use
the show method to display an alert view once it is configured.

Tasks
Creating Alert Views
 – initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:
Setting Properties
 delegate property
 title property
 message property
 visible property
Configuring Buttons
 – addButtonWithTitle:
 numberOfButtons property
 – buttonTitleAtIndex:
 cancelButtonIndex property
 firstOtherButtonIndex property
Displaying
 – show
Dismissing
 – dismissWithClickedButtonIndex:animated:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 25

UIScrollView Class Reference

Overview
The UIScrollView class provides support for displaying content that is larger than the
size of the application’s window. It enables users to scroll within that content by making
swiping gestures, and to zoom in and back from portions of the content by making
pinching gestures.

UIScrollView is the superclass of several UIKit classes including UITableView and
UITextView.

The central notion of a UIScrollView object (or, simply, a scroll view) is that it is a view
whose origin is adjustable over the content view. It clips the content to its frame, which
generally (but not necessarily) coincides with that of the application’s main window. A
scroll view tracks the movements of fingers and adjusts the origin accordingly. The view
that is showing its content “through” the scroll view draws that portion of itself based on
the new origin, which is pinned to an offset in the content view. The scroll view itself
does no drawing except for displaying vertical and horizontal scroll indicators. The scroll
view must know the size of the content view so it knows when to stop scrolling; by
default, it “bounces” back when scrolling exceeds the bounds of the content.

The object that manages the drawing of content displayed in a scroll view should tile the
content’s subviews so that no view exceeds the size of the screen. As users scroll in the
scroll view, this object should add and remove subviews as necessary.

Because a scroll view has no scroll bars, it must know whether a touch signals an intent
to scroll versus an intent to track a subview in the content. To make this determination,
it temporarily intercepts a touch-down event by starting a timer and, before the timer
fires, seeing if the touching finger makes any movement. If the time fires without a
significant change in position, the scroll view sends tracking events to the touched
subview of the content view. If the user then drags their finger far enough before the
timer elapses, the scroll view cancels any tracking in the subview and performs the
scrolling itself. Subclasses can override the touchesShouldBegin:withEvent:inContentView:,
pagingEnabled, and touchesShouldCancelInContentView: methods (which are called by the
scroll view) to affect how the scroll view handles scrolling gestures.

A scroll view also handles zooming and panning of content. As the user makes a
pinch-in or pinch-out gesture, the scroll view adjusts the offset and the scale of the
content. When the gesture ends, the object managing the content view should should
update subviews of the content as necessary. (Note that the gesture can end and a
finger could still be down.) While the gesture is in progress, the scroll view does not
send any tracking calls to the subview.

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 26

The UIScrollView class can have a delegate that must adopt the UIScrollViewDelegate
protocol. For zooming and panning to work, the delegate must implement both
viewForZoomingInScrollView: and scrollViewDidEndZooming:withView:atScale:; in addition,
the maximum (maximumZoomScale) and minimum (minimumZoomScale) zoom scale
must be different.

Tasks
Managing the Display of Content
 – setContentOffset:animated:
 contentOffset property
 contentSize property
 contentInset property
Managing Scrolling
 scrollEnabled property
 directionalLockEnabled property
 scrollsToTop property
 – scrollRectToVisible:animated:
 pagingEnabled property
 bounces property
 alwaysBounceVertical property
 alwaysBounceHorizontal property
 – touchesShouldBegin:withEvent:inContentView:
 – touchesShouldCancelInContentView:
 canCancelContentTouches property
 delaysContentTouches property
 decelerationRate property
 dragging property
 tracking property
 decelerating property
Managing the Scroll Indicator
 indicatorStyle property
 scrollIndicatorInsets property
 showsHorizontalScrollIndicator property
 showsVerticalScrollIndicator property
 – flashScrollIndicators
Zooming and Panning
 – zoomToRect:animated:
 zoomScale property
 – setZoomScale:animated:
 maximumZoomScale property
 minimumZoomScale property
 zoomBouncing property
 zooming property
 bouncesZoom property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 27

Managing the Delegate
 delegate property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 28

UITableView Class Reference

Overview
An instance of UITableView (or simply, a table view) is a means for displaying and
editing hierarchical lists of information.

A table view in the UIKit framework is limited to a single column because it is designed
for a device with a small screen. UITableView is a subclass of UIScrollView, which allows
users to scroll through the table, although UITableView allows vertical scrolling only. The
cells comprising the individual items of the table are UITableViewCell objects;
UITableView uses these objects to draw the visible rows of the table. Cells have
content—��titles and images—and can have, near the right edge, accessory views.
Standard accessory views are disclosure indicators or detail disclosure buttons; the
former leads to the next level in a data hierarchy and the latter leads to a detailed view
of a selected item. Accessory views can also be framework controls, such as switches
and sliders, or can be custom views. Table views can enter an editing mode where
users can insert, delete, and reorder rows of the table.

A table view is made up of zero or more sections, each with its own rows. Sections are
identified by their index number within the table view, and rows are identified by their
index number within a section. Any section can optionally be preceded by a section
header, and optionally be followed by a section footer.

Table views can have one of two styles, UITableViewStylePlain and
UITableViewStyleGrouped. When you create a UITableView instance you must specify a
table style, and this style cannot be changed. In the plain style, section headers and
footers float above the content if the part of a complete section is visible. A table view
can have an index that appears as a bar on the right hand side of the table (for
example, "a" through "z"). You can touch a particular label to jump to the target section.
The grouped style of table view provides a default background color and a default
background view for all cells. The background view provides a visual grouping for all
cells in a particular section. For example, one group could be a person's name and title,
another group for phone numbers that the person uses, and another group for email
accounts and so on. See the Settings application for examples of grouped tables. Table
views in the grouped style cannot have an index.

Many methods of UITableView take NSIndexPath objects as parameters and return
values. UITableView declares a category on NSIndexPath that enables you to get the
represented row index (row property) and section index (section property), and to
construct an index path from a given row index and section index
(indexPathForRow:inSection: method). Especially in table views with multiple sections,
you must evaluate the section index before identifying a row by its index number.

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 29

A UITableView object must have an object that acts as a data source and an object that
acts as a delegate; typically these objects are either the application delegate or, more
frequently, a custom UITableViewController object. The data source must adopt the
UITableViewDataSource protocol and the delegate must adopt the UITableViewDelegate
protocol. The data source provides information that UITableView needs to construct
tables and manages the data model when rows of a table are inserted, deleted, or
reordered. The delegate provides the cells used by tables and performs other tasks,
such as managing accessory views and selections.

When sent a setEditing:animated: message (with a first parameter of YES), the table view
enters into editing mode where it shows the editing or reordering controls of each visible
row, depending on the editingStyle of each associated UITableViewCell. Clicking on the
insertion or deletion control causes the data source to receive a
tableView:commitEditingStyle:forRowAtIndexPath: message. You commit a deletion or
insertion by calling deleteRowsAtIndexPaths:withRowAnimation: or
insertRowsAtIndexPaths:withRowAnimation:, as appropriate. Also in editing mode, if a
table-view cell has its showsReorderControl property set to YES, the data source receives
a tableView:moveRowAtIndexPath:toIndexPath: message. The data source can selectively
remove the reordering control for cells by implementing
tableView:canMoveRowAtIndexPath:.

UITableView caches table-view cells only for visible rows, but caches row, header, and
footer heights for the entire table. You can create custom UITableViewCell objects with
content or behavioral characteristics that are different than the default cells; â��A
Closer Look at Table-View Cells" in Table View Programming Guide for iPhone OS
explains how.

Tasks
Initializing a UITableView Object
 – initWithFrame:style:
Configuring a Table View
 – dequeueReusableCellWithIdentifier:
 style property
 – numberOfRowsInSection:
 – numberOfSections
 rowHeight property
 separatorStyle property
 separatorColor property
 tableHeaderView property
 tableFooterView property
 sectionHeaderHeight property
 sectionFooterHeight property
 sectionIndexMinimumDisplayRowCount property
Accessing Cells and Sections

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 30

 – cellForRowAtIndexPath:
 – indexPathForCell:
 – indexPathForRowAtPoint:
 – indexPathsForRowsInRect:
 – visibleCells
 – indexPathsForVisibleRows
Scrolling the Table View
 – scrollToRowAtIndexPath:atScrollPosition:animated:
 – scrollToNearestSelectedRowAtScrollPosition:animated:
Managing Selections
 – indexPathForSelectedRow
 – selectRowAtIndexPath:animated:scrollPosition:
 – deselectRowAtIndexPath:animated:
 allowsSelection property
 allowsSelectionDuringEditing property
Inserting and Deleting Cells
 – beginUpdates
 – endUpdates
 – insertRowsAtIndexPaths:withRowAnimation:
 – deleteRowsAtIndexPaths:withRowAnimation:
 – insertSections:withRowAnimation:
 – deleteSections:withRowAnimation:
Managing the Editing of Table Cells
 editing property
 – setEditing:animated:
Reloading the Table View
 – reloadData
 – reloadRowsAtIndexPaths:withRowAnimation:
 – reloadSections:withRowAnimation:
 – reloadSectionIndexTitles
Accessing Drawing Areas of the Table View
 – rectForSection:
 – rectForRowAtIndexPath:
 – rectForFooterInSection:
 – rectForHeaderInSection:
Managing the Delegate and the Data Source
 dataSource property
 delegate property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 31

UITextView Class Reference

Overview
The UITextView class implements the behavior for a scrollable, multiline text region. The
class supports the display of text using a custom font, color, and alignment and also
supports text editing. You typically use a text view to display multiple lines of text, such
as when displaying the body of a large text document.

This class does not support multiple styles for text. The font, color, and text alignment
attributes you specify always apply to the entire contents of the text view. To display
more complex styling in your application, you need to use a UIWebView object and
render your content using HTML.

Managing the Keyboard
When the user taps in an editable text view, that text view becomes the first responder
and automatically asks the system to display the associated keyboard. Because the
appearance of the keyboard has the potential to obscure portions of your user interface,
it is up to you to make sure that does not happen by repositioning any views that might
be obscured. Some system views, like table views, help you by scrolling the first
responder into view automatically. If the first responder is at the bottom of the scrolling
region, however, you may still need to resize or reposition the scroll view itself to ensure
the first responder is visible.

It is your application’s responsibility to dismiss the keyboard at the time of your
choosing. You might dismiss the keyboard in response to a specific user action, such as
the user tapping a particular button in your user interface. To dismiss the keyboard,
send the resignFirstResponder message to the text view that is currently the first
responder. Doing so causes the text view object to end the current editing session (with
the delegate object’s consent) and hide the keyboard.

The appearance of the keyboard itself can be customized using the properties provided
by the UITextInputTraits protocol. Text view objects implement this protocol and support
the properties it defines. You can use these properties to specify the type of keyboard
(ASCII, Numbers, URL, Email, and others) to display. You can also configure the basic
text entry behavior of the keyboard, such as whether it supports automatic capitalization
and correction of the text.

Keyboard Notifications
When the system shows or hides the keyboard, it posts several keyboard notifications.
These notifications contain information about the keyboard, including its size, which you
can use for calculations that involve repositioning or resizing views. Registering for

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 32

these notifications is the only way to get some types of information about the keyboard.
The system delivers the following notifications for keyboard-related events:

▪ UIKeyboardWillShowNotification
▪ UIKeyboardDidShowNotification
▪ UIKeyboardWillHideNotification
▪ UIKeyboardDidHideNotification
For more information about these notifications, see their descriptions in UIWindow
Class Reference.

Tasks
Configuring the Text Attributes
 text property
 font property
 textColor property
 editable property
 dataDetectorTypes property
 textAlignment property
 – hasText
Working with the Selection
 selectedRange property
 – scrollRangeToVisible:
Accessing the Delegate
 delegate property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 33

UISearchBar Class Reference

Overview
The UISearchBar class implements a text field control for text-based searches. The
control provides a text field for entering text, a search button, a bookmark button, and a
cancel button. The UISearchBar object does not actually perform any searches. You use
a delegate, an object conforming to the UISearchBarDelegate protocol, to implement the
actions when text is entered and buttons are clicked.

Tasks
Text Content
 placeholder property
 prompt property
 text property
Display Attributes
 barStyle property
 tintColor property
 translucent property
Text Input Properties
 autocapitalizationType property
 autocorrectionType property
 keyboardType property
Button Configuration
 showsBookmarkButton property
 showsCancelButton property
 – setShowsCancelButton:animated:
Scope Buttons
 scopeButtonTitles property
 selectedScopeButtonIndex property
 showsScopeBar property
Delegate
 delegate property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 34

UIWebView Class Reference

Overview
You use the UIWebView class to embed web content in your application. To do so, you
simply create a UIWebView object, attach it to a window, and send it a request to load
web content. You can also use this class to move back and forward in the history of
webpages, and you can even set some web content properties programmatically.

Use the loadRequest: method to begin loading web content, the stopLoading method to
stop loading, and the loading property to find out if a web view is in the process of
loading.

If you allow the user to move back and forward through the webpage history, then you
can use the goBack and goForward methods as actions for buttons. Use the canGoBack
and canGoForward properties to disable the buttons when the user can’t move in a
direction.

By default, a web view automatically converts telephone numbers that appear in web
content to Phone links. When a Phone link is tapped, the Phone application launches
and dials the number. Set the detectsPhoneNumbers property to NO to turn off this default
behavior.

You can also use the scalesPageToFit property to programmatically set the scale of web
content the first time it is displayed in a web view. Thereafter, the user can change the
scale using gestures.

Set the delegate property to an object conforming to the UIWebViewDelegate protocol if
you want to track the loading of web content.

Read Safari Web Content Guide for how to create web content that is compatible with
and optimized for displaying in Safari on iPhone and your web views.

Subclassing Notes
The UIWebView class should not be subclassed.

Tasks
Setting the Delegate
 delegate property
Loading Content

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 35

 – loadData:MIMEType:textEncodingName:baseURL:
 – loadHTMLString:baseURL:
 – loadRequest:
 request property
 loading property
 – stopLoading
 – reload
Moving Back and Forward
 canGoBack property
 canGoForward property
 – goBack
 – goForward
Setting Web Content Properties
 detectsPhoneNumbers property
 scalesPageToFit property
Running JavaScript
 – stringByEvaluatingJavaScriptFromString:
New Methods
 dataDetectorTypes property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 36

UIControl Class Reference

Overview
UIControl is the base class for controls: objects such as buttons and sliders that are
used to convey user intent to the application. You cannot use UIControl directly to
instantiate controls. It instead defines the common interface and behavioral structure for
all subclasses of it.

The main role of UIControl is to define an interface and base implementation for
preparing action messages and initially dispatching them to their targets when specified
events occur. (See “The Target-Action Mechanism” for an overview.) It also includes
methods for getting and setting control state (for example, for determining whether a
control is enabled or highlighted) and it defines methods for tracking touches within a
control (the latter group of methods are for overriding by subclasses).

The Target-Action Mechanism
The design of the target-action mechanism in the UIKit framework is based on the
Multi-Touch event model. In iPhone OS the user’s fingers (or touches) convey intent
(instead of mouse clicks and drags), and there can be multiple touches at any moment
on a control going in different directions.

Note: For more information on the Multi-Touch event model, see Event Handling in
iPhone Application Programming Guide.

The UIControl.h header file declares a large number of control events as constants for a
bit mask described in “Control Events”. Some control events specify the behavior of
touches in and around the control—various permutations of actions such a finger
touching down in a control, dragging into and away from a control, and lifting up from a
control. Other control events specify editing phases initiated when a finger touches
down in a text field. And yet another control event, UIControlEventValueChanged, is for
controls such as sliders, where a value continuously changes based on the
manipulation of the control. For any particular action message, you can specify one or
more control events as the trigger for sending that message. For example, you could
request a certain action message be sent to a certain target when a finger touches
down in a control or is dragged into it (UIControlEventTouchDown |
UIControlEventTouchDragEnter).

You prepare a control for sending an action message by calling
addTarget:action:forControlEvents: for each target-action pair you want to specify. This
method builds an internal dispatch table associating each target-action pair with a

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 37

control event. When a user touches the control in a way that corresponds to one or
more specified events, UIControl sends itself sendActionsForControlEvents:. This results in
UIControl sending the action to UIApplication in a sendAction:to:from:forEvent: message.
UIApplication is the centralized dispatch point for action messages; if a nil target is
specified for an action message, the application sends the action to the first responder
where it travels up the responder chain until it finds an object willing to handle the action
message—that is, object that implements a method corresponding to the action
selector. (Event Handling gives an overview of the first responder and the responder
chain.)

UIKit allows three different forms of action selector:

 - (void)action
 - (void)action:(id)sender
 - (void)action:(id)sender forEvent:(UIEvent *)event
The sendAction:to:fromSender:forEvent: method of UIApplication pushes two parameters
when calling the target. These last two parameters are optional for the application
because it's up to the caller (usually a UIControl object) to remove any parameters it
added.

Subclassing Notes
You may want to extend a UIControl subclass for two basic reasons:

▪ To observe or modify the dispatch of action messages to targets for particular
eventsTo do this, override sendAction:to:forEvent:, evaluate the passed-in selector,
target object, or “Note” bit mask and proceed as required.

▪ To provide custom tracking behavior (for example, to change the highlight
appearance)To do this, override one or all of the following methods:
beginTrackingWithTouch:withEvent:, continueTrackingWithTouch:withEvent:,
endTrackingWithTouch:withEvent:.

Tasks
Preparing and Sending Action Messages
 – sendAction:to:forEvent:
 – sendActionsForControlEvents:
 – addTarget:action:forControlEvents:
 – removeTarget:action:forControlEvents:
 – actionsForTarget:forControlEvent:
 – allTargets
 – allControlEvents
Setting and Getting Control Attributes
 state property
 enabled property
 selected property
 highlighted property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 38

 contentVerticalAlignment property
 contentHorizontalAlignment property
Tracking Touches and Redrawing Controls
 – beginTrackingWithTouch:withEvent:
 – continueTrackingWithTouch:withEvent:
 – endTrackingWithTouch:withEvent:
 – cancelTrackingWithEvent:
 tracking property
 touchInside property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 39

UIButton Class Reference

Overview
An instance of the UIButton class implements a button on the touch screen. A button
intercepts touch events and sends an action message to a target object when tapped.
Methods for setting the target and action are inherited from UIControl. This class
provides methods for setting the title, image, and other appearance properties of a
button. By using these accessors, you can specify a different appearance for each
button state.

Tasks
Creating Buttons
 + buttonWithType:
Configuring Button Title
 buttonType property
 font property
 lineBreakMode property
 titleShadowOffset property
 titleLabel property
 reversesTitleShadowWhenHighlighted property
 – setTitle:forState:
 – setTitleColor:forState:
 – setTitleShadowColor:forState:
 – titleColorForState:
 – titleForState:
 – titleShadowColorForState:
Configuring Button Images
 adjustsImageWhenHighlighted property
 adjustsImageWhenDisabled property
 showsTouchWhenHighlighted property
 – backgroundImageForState:
 – imageForState:
 – setBackgroundImage:forState:
 – setImage:forState:
Configuring Edge Insets
 contentEdgeInsets property
 titleEdgeInsets property
 imageEdgeInsets property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 40

Getting the Current State
 currentTitle property
 currentTitleColor property
 currentTitleShadowColor property
 currentImage property
 currentBackgroundImage property
 imageView property
Getting Dimensions
 – backgroundRectForBounds:
 – contentRectForBounds:
 – titleRectForContentRect:
 – imageRectForContentRect:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 41

UIDatePicker Class Reference

Overview
The UIDatePicker class implements an object that uses multiple rotating wheels to allow
users to select dates and times. iPhone examples of a date picker are the Timer and
Alarm (Set Alarm) panes of the Clock application. You may also use a date picker as a
countdown timer.

When properly configured, a UIDatePicker object sends an action message when a user
finishes rotating one of the wheels to change the date or time; the associated control
event is UIControlEventValueChanged. A UIDatePicker object presents the countdown
timer but does not implement it; the application must set up an NSTimer object and
update the seconds as they’re counted down.

UIDatePicker does not inherit from UIPickerView, but it manages a custom picker-view
object as a subview.

Tasks
Managing the Date and Calendar
 calendar property
 date property
 locale property
 – setDate:animated:
 timeZone property
Configuring the Date Picker Mode
 datePickerMode property
Configuring Temporal Attributes
 maximumDate property
 minimumDate property
 minuteInterval property
 countDownDuration property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 42

UIPageControl Class Reference

Overview
You use the UIPageControl class to create and manage page controls. A page control is
a succession of dots centered in the control. Each dot corresponds to a page in the
application’s document (or other data-model entity), with the white dot indicating the
currently viewed page.

For an example of a page control, see the Weather application (with a number of
locations configured) or Safari (with a number of tab views set).

When a user taps a page control to move to the next or previous page, the control
sends the UIControlEventValueChanged event for handling by the delegate. The delegate
can then evaluate the currentPage property to determine the page to display. The page
control advances only one page in either direction.

Note: Because of physical factors—namely the size of the device screen and the size
and layout of the page indicators—there is a limit of about 20 page indicators on the
screen before they are clipped.

Tasks
Managing the Page Navigation
 currentPage property
 numberOfPages property
 hidesForSinglePage property
Updating the Page Display
 defersCurrentPageDisplay property
 – updateCurrentPageDisplay
Resizing the Control
 – sizeForNumberOfPages:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 43

UISegmentedControl Class
Reference

Overview
A UISegmentedControl object is a horizontal control made of multiple segments, each
segment functioning as a discrete button. A segmented control affords a compact
means to group together a number of controls.

A segmented control can display a title (an NSString object) or an image (UIImage
object). The UISegmentedControl object automatically resizes segments to fit
proportionally within their superview unless they have a specific width set. When you
add and remove segments, you can request that the action be animated with sliding and
fading effects.

You register the target-action methods for a segmented control using the
UIControlEventValueChanged constant as shown below.

[segmentedControl addTarget:self

 action:@selector(action:)

 forControlEvents:UIControlEventValueChanged];

How you configure a segmented control can affect its display behavior:

▪ If you set a segmented control to have a momentary style, a segment doesn’t show
itself as selected (blue background) when the user touches it. The disclosure
button is always momentary and doesn’t affect the actual selection.

▪ Prior to iPhone OS 3.0, if a segmented control has only two segments, then it
behaves like a switch—tapping the currently-selected segment causes the other
segment to be selected. (On iPhone OS 3.0 and later, tapping the
currently-selected segment does not cause the other segment to be selected.)

Tasks
Initializing a Segmented Control
 – initWithItems:
Managing Segment Content
 – setImage:forSegmentAtIndex:
 – imageForSegmentAtIndex:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 44

 – setTitle:forSegmentAtIndex:
 – titleForSegmentAtIndex:
Managing Segments
 – insertSegmentWithImage:atIndex:animated:
 – insertSegmentWithTitle:atIndex:animated:
 numberOfSegments property
 – removeAllSegments
 – removeSegmentAtIndex:animated:
 selectedSegmentIndex property
Managing Segment Behavior and Appearance
 momentary property
 segmentedControlStyle property
 tintColor property
 – setEnabled:forSegmentAtIndex:
 – isEnabledForSegmentAtIndex:
 – setContentOffset:forSegmentAtIndex:
 – contentOffsetForSegmentAtIndex:
 – setWidth:forSegmentAtIndex:
 – widthForSegmentAtIndex:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 45

UITextField Class Reference

Overview
A UITextField object is a control that displays editable text and sends an action message
to a target object when the user presses the return button. You typically use this class to
gather small amounts of text from the user and perform some immediate action, such as
a search operation, based on that text.

In addition to its basic text-editing behavior, the UITextField class supports the use of
overlay views to display additional information (and provide additional command
targets) inside the text field boundaries. You can use custom overlay views to display
features such as a bookmarks button or search icon. The UITextField class also provides
a built-in button for clearing the current text.

A text field object supports the use of a delegate object to handle editing-related
notifications. You can use this delegate to customize the editing behavior of the control
and provide guidance for when certain actions should occur. For more information on
the methods supported by the delegate, see the UITextFieldDelegate protocol.

Managing the Keyboard
When the user taps in a text field, that text field becomes the first responder and
automatically asks the system to display the associated keyboard. Because the
appearance of the keyboard has the potential to obscure portions of your user interface,
it is up to you to make sure that does not happen by repositioning any views that might
be obscured. Some system views, like table views, help you by scrolling the first
responder into view automatically. If the first responder is at the bottom of the scrolling
region, however, you may still need to resize or reposition the scroll view itself to ensure
the first responder is visible.

It is your application’s responsibility to dismiss the keyboard at the time of your
choosing. You might dismiss the keyboard in response to a specific user action, such as
the user tapping a particular button in your user interface. You might also configure your
text field delegate to dismiss the keyboard when the user presses the “return” key on
the keyboard itself. To dismiss the keyboard, send the resignFirstResponder message to
the text field that is currently the first responder. Doing so causes the text field object to
end the current editing session (with the delegate object’s consent) and hide the
keyboard.

The appearance of the keyboard itself can be customized using the properties provided
by the UITextInputTraits protocol. Text field objects implement this protocol and support
the properties it defines. You can use these properties to specify the type of keyboard
(ASCII, Numbers, URL, Email, and others) to display. You can also configure the basic

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 46

text entry behavior of the keyboard, such as whether it supports automatic capitalization
and correction of the text.

Keyboard Notifications
When the system shows or hides the keyboard, it posts several keyboard notifications.
These notifications contain information about the keyboard, including its size, which you
can use for calculations that involve moving views. Registering for these notifications is
the only way to get some types of information about the keyboard. The system delivers
the following notifications for keyboard-related events:

▪ UIKeyboardWillShowNotification
▪ UIKeyboardDidShowNotification
▪ UIKeyboardWillHideNotification
▪ UIKeyboardDidHideNotification
For more information about these notifications, see their descriptions in UIWindow
Class Reference. For information about how to show and hide the keyboard, see Text
and Web.

Tasks
Accessing the Text Attributes
 text property
 placeholder property
 font property
 textColor property
 textAlignment property
Sizing the Text Field’s Text
 adjustsFontSizeToFitWidth property
 minimumFontSize property
Managing the Editing Behavior
 editing property
 clearsOnBeginEditing property
Setting the View’s Background Appearance
 borderStyle property
 background property
 disabledBackground property
Managing Overlay Views
 clearButtonMode property
 leftView property
 leftViewMode property
 rightView property
 rightViewMode property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 47

Accessing the Delegate
 delegate property
Drawing and Positioning Overrides
 – textRectForBounds:
 – drawTextInRect:
 – placeholderRectForBounds:
 – drawPlaceholderInRect:
 – borderRectForBounds:
 – editingRectForBounds:
 – clearButtonRectForBounds:
 – leftViewRectForBounds:
 – rightViewRectForBounds:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 48

UISlider Class Reference

Overview
A UISlider object is a visual control used to select a single value from a continuous
range of values. Sliders are always displayed as horizontal bars. An indicator, or
thumb, notes the current value of the slider and can be moved by the user to change
the setting.

Customizing the Slider’s Appearance
The most common way to customize the slider’s appearance is to provide custom
minimum and maximum value images. These images sit at either end of the slider
control and indicate which value that end of the slider represents. For example, a slider
used to control volume might display a small speaker with no sound waves emanating
from it for the minimum value and display a large speaker with many sound waves
emanating from it for the maximum value.

The bar on which the thumb rides is referred to as the slider’s track. Slider controls
draw the track using two distinct images, which are customizable. The region between
the thumb and the end of the track associated with the slider’s minimum value is drawn
using the minimum track image. The region between the thumb and the end of the
track associated with the slider’s maximum value is drawn using the maximum track
image. Different track images are used in order to provide context as to which end
contains the minimum value. For example, the minimum track image typically contains a
blue highlight while the maximum track image contains a white highlight. You can
assign different pairs of track images to each of control states of the slder. Assigning
different images to each state lets you customize the appearance of the slider when it is
enabled, disabled, highlighted, and so on.

In addition to customizing the track images, you can also customize the appearance of
the thumb itself. Like the track images, you can assign different thumb images to each
control state of the slider.

Note: The slider control provides a set of default images for both the track and thumb. If
you do not specify any custom images, those images are used automatically.

Tasks
Accessing the Slider’s Value
 value property

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 49

 – setValue:animated:
Accessing the Slider’s Value Limits
 minimumValue property
 maximumValue property
Modifying the Slider’s Behavior
 continuous property
Changing the Slider’s Appearance
 minimumValueImage property
 maximumValueImage property
 currentMinimumTrackImage property
 – minimumTrackImageForState:
 – setMinimumTrackImage:forState:
 currentMaximumTrackImage property
 – maximumTrackImageForState:
 – setMaximumTrackImage:forState:
 currentThumbImage property
 – thumbImageForState:
 – setThumbImage:forState:
Overrides for Subclasses
 – maximumValueImageRectForBounds:
 – minimumValueImageRectForBounds:
 – trackRectForBounds:
 – thumbRectForBounds:trackRect:value:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 50

UISwitch Class Reference

Overview
You use the UISwitch class to create and manage the On/Off buttons you see, for
example, in the preferences (Settings) for such services as Airplane Mode. These
objects are known as switches.

The UISwitch class declares a property and a method to control its on/off state. As with
UISlider, when the user manipulates the switch control (“flips” it) a
UIControlEventValueChanged event is generated, which results in the control (if properly
configured) sending an action message.

The UISwitch class is not customizable.

Tasks
Initializing the Switch Object
 – initWithFrame:
Setting the Off/On State
 on property
 – setOn:animated:

Document: UIView class hierarchy plus UIApplication and UIResponder, compiled by Tom Pace (www.TheEdgeOfThought.com)
Source: Apple's iPhone Developer Center
Purpose: Provide a condensed, printable version of UIView hierarchy's raw documentation Page 51

